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The quasistatic boundary value problem for two-mode elastoplastic processes
and the problem of determining the initial velocity of the points of a body
after the break for an arbitrary elastoplastic process with the break following
the simple deformation, are both formulated, It is shown for elastoplastic
processes with a corner point, that under certain assumptions about the phy -
sical functions describing the material properties, the variation in the exter-
nal load determines the initial velocities of the particles of the body in a
unique manner, and therefore also the corner angle in the strain trajectory
at each point. The theorem of uniqueness of the solution of the boundary
value problem is proved for the loads which induce the two-mode elasto -
plastic processes where regions of active deformations as well as the regions
of unloading may appear in the body.

1. Analysis of the stress-strain relations, In the case of a two-mode
elastoplastic process with the strain trajectory developing a corner of angle 0 (0 <
0 < n) at the instant ¢ ,the relations between the stress 0ij and strain e;; tensors
have the form
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= are co:( —) = arcos (pi]- -5;—]-)

s =3 (t(] = r SOE[ES, }“]

Here “s is the arc length of the strain trajectory, s° the length of the simple deform-
ation segment ( & denotes the yield point and A is a quantity of the order of several
& ), pii° is the direction tensor on the simple deformation segment,® (s) denotes
the stress intensity during the simple deformation, pij with s> isthe direction
tensor of the strain trajectory past the comer, K is the bulk elasticity modulus and &
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is the angle of convergence i. e. the angle between the stress vector 6 and the vector

p of the tangent to the strain trajectory, corresponding to the tensor pi; [3].

In accordance with the isotropy postulate [4], we have Oy = Oy (s°, 6; s),

¢ =0 ( 6;5). The relations (1,1) hold for any value of the comer angle 6, but
the material functions o, and ¢ for the directions of the active deformation and un-
loading are different. It is usually assumed [1, 4] that in the unloading region the stress
and strain increments are linearly connected. When the deformation anisotropy is neg-
lected, we have

Sij— S = 26 (3;; — 9;;°) (1.3)

where G denotes the shear modulus,
We adopt the following assumptions for oy and ¢ which are in agreement with
the experimental data:
1°, o, =C (P s+ h) for any values of s° and 6, and o, (s°, 8; s°) =
D () 0, (s, 0;8) > D(s) as 6 —0,s>% thereexists q, (s°40,0) =
lim doy, (°, 0; s)/as a5 s— 9, 3>,
Experiments have shown [ 5, 6] that the quantity day (s°, 0; s)/as is finite for any
se (s° s+ h), 8 = (0, n/2]. Here h is the trace of the delay of the vector proper-
ties, For small As=s —s andlarge 0 < (0, #/2] more accurate experiments
are needed. The experimental data available admit two possibilities: oy’ (s° + 0,
n/2) = 0 (experiments in [5,6or 0y’ (s°+ 0, 6) <0 (experimentsin [7,8 n.
For the work hardening materials the following approximation [9] can be used:

Oy (°+0,0) = @ (+°) cos 0 (1.4)

where @’ (s) is the hardening modulus during a simple deformation, and according
to [7] we have the approximation

oy (°+0,6) =@ (s° — BO" (L.5)

where B and n are material constants,
2°, de=C(s°°+h) forany s° and 8; ®(s°0; s) =0 for s = %8 (&,
6;5) —0 as 8 —0 forany s> —oo < M<<a®(s° 0; 9/as<< 0 for
se(°,°+h); a ¥ (°+ 0,0 = lim 0 (s°, 0; 5)/0s exists for s -, s > %, ¥ (",
0;s) =0 when s > s°+ h for any s° < [e,, A} and 6 = (0, n/2].
In particular, the following approximation is used in [7]:
9 (°+ 0,0 = —CO/D () (1.6)
where € is a material constant,
3°, Thefunction U = o,cos?® increasesis s when s° and O are fixed (see
the experiments in [6],and(*),
When 6 -0 and s >s°, the second relations of (1. 1) yield the relations of
the theory of small elastoplastic deformations {1]. The following limit exists under
the assumptions 1° and 2°:

*) Lenskii V.S. Study of plasticity of metals under complex loading., Doctoral dis -
sertation, MGU, 1960)



398 §.Nedzhesku — Klezha

S5 @) — 845 (%)

s =tim 28O Z260 a6, 0 v, 1200 0npe D)
>t
where dd
W on o ° D (s°) ¥’ (s° 40, 6)
Vij= P (s°,0; s 40) Gl (s° 0) = — 3sin 0 (1.8)
G (°, 0) =15l (s°+ 0, 0) 4 @ (s° ¥ (s° + 0, B)ctg 6] (1.9)

where Vij is the deviator of the strain rate tensor at the instant ¢, and 7, is the
corresponding intensity .

Formulas (1.3), (1.7) and (1,9) imply that G (s°,8) = G, G° (s°, 0) = 0 in the
region of unloading,i,e. when @ e [n/2, ] ,therefore we have

0, (°+0,0) =3Gcos® ¢ (°+ 0, 0) = —3G sin 6/® (") (1.10)

Assuming now that the function S;;'t+ iscontinuousin 0, we obtain o,/(s* 4-0,7/2)=0 .

2. Classes of functions used, Let D be a set of continuously differen-
tiable vector functions u defined on a bounded region Q( R® and satisfying [10]
the conditions

fudz=0, {(uxridz=0 (2.1)
Q Q

The following Korn inequality [ 10 ] holds in the domain D :

du du
I, < G, I, = gab;;dx, I, = Ssij (u) &;; (u) dz (2.2)
2 Q

Here C; is a constant depending on € only. The Poincaré inequality [11]
; 2
12<021,+03|Sudzl 12=S|u|2dx 2.3)
Q Q

holds for the functions belonging to D , Here €, and C,; are constants depending
on Q only, Therefore,by virtue of (2,2) and (2, 3) we find, that the Sobolev norms
lu I%n =1, ||“U?1) =1I,+ I, andthe norm [12]

Jup* = 1, . 4)

are equivalent,
Let H (Q) denotea Hilbertspace obtainedbytheclosureof D inthenorm (2.4).

3, Uniqueness theorem, In the case of two-mode elastoplastic processes the
problem of equilibrium of a body occupyingtheregion Q withtheboundary I' can be
statedin the form of the following boundary value problem : it is required to determine the
vector displacement function wu, thedeformationtensor e;; andthestresstensor

oij whichsatisfy,in theregion Q ,thefollowingrequirementforevery t < [0, T}

uect@QnaEeuyun
gp o eCt@NCEQUID G,7=1,23)
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as well as the relations (1, 1) and (1.2 ), the Cauchy relations
1 (Ou;  OBuy
&; (W) = T(a_z'j' %, )

equations of equilibrium and the boundary conditions

ac
ax +F,; =0 inQ (.1)

up=1ypyon Ty, o35 vi="T,;on I ([, JT;=T). (3.2)

The mass forces F, the stresses T, and the displacement ¥ at the boundary
are all given functions, Let us assume that F, T, and ¥ vary in such a manner that
a simple deformation trajectory is realized [1,13] on the interval [0, to] at any point
of the body, Let u® be the displacement vector at the instant #,, corresponding to
the solution of the problem of simple deformation [14],

Differentiating the relations (3, 1) and (3. 2) with respect to ¢ (¢ > tp), performing
the passage to the limit ¢— ¢, + 0 and taking into account the formulas (1,7) —
(1. 9) and (1. 2), wwe obtain the following system of differential equations for determining
the initial velocity of the particles beyond the cormer point.

7} d
(5% 0) AV, — - div V) o QG ONY o+ (3.3)
K—d1vV+G°(s 6)30 (Au —-a—zfdivm)—i-

o (-] vu Q ne
E.(ZG (s,6)§-°—)31.j +FY =

— " (3.4)
V,=v% onT, sifv; =T, on T,
where " dF, . iT,; . ay,
F.*=1lim _dt » Ty =\im-—7—, ¢ =lim-—7~

(t — ty), (l > Iy}

We shall consider, for the sake of simplicity , the second boundary value problem
in which the boundary T is acted upon by the surface forces T, only, i.e, when
Iy =T, Ty =0. Multiplying scalarly the system of equations (3.3) by any vector
function continuously differentiable in Q and integrating over the whole volume we
obtain, with (3, 4) taken into account, an integral identity. We shall call the vector
function Ve H (Q) satisfying this integral identity for any continuously differentiable
vector function ¢ ,a generalized solution of the boundary value problem (3.3),(3.4).
Let us reduce the boundary value problem (3.3),(3.4) to the operator form. The
assumptions that the functions ¢! (°,8) and ¢° (s°, 0) are continuous in(s>,0)
[es, Al X [0, a] imply , that they are bounded. In this case we can separate a
linear bounded functipnal in ¢ = H (Q) from the integral identity in question for
any Ve H(Q) . The Riesz theorem [15] will then enable us to find the operator
a (V) acting from H (Q) into H (Q). We have

(@), o= 261" OV, +26°(=, 0)v,p,7 + (3.5)

Q

i
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3K8,; div V] e (@) dz = \ Fitode +  Tiieds, VoeH (@)
Q r

We shall call the operator a (V) the fundamental operator of the boundary value
problem (3,3),(3.4) and assume that the integrals in the right hand side of (3. 5) define
linear bounded integrals in the space H (2). Reference [16] gives various conditions
under which the necessary requirement is realized,e.g. F; = Lp (R) (Vp > $/s) and

T\,i'+ e Ly (T) (Vg > %/5). According to the Riesz theorem there exists f = H (Q)
such that

.9 ={ Froar + {Tiods, VecH (@)
Q r

Let us find the sufficient conditions which must be satisfied by the functions oy’
(4 0,8 and ¥ (s° -+ 0, 8) for the operator a (V) to be strictly monotonous on
theset H (R) [17], i.e. for the inequality

(a (V) —a(V), VI —VH >0 (3.6)

to hold for any V!, VZ & H (Q) andtobecomeanequalityonly whenV! = vzin H (Q).
Let V and W be the vectors in a five~-dimensional space 3% [3] corresponding
to the deviators Vij and i {9). We set

(s 9 (s° 40,8
A=~ EEGEER D o4 0,0) + @1

D (s°)ctg 09’ (s° + 0, O)} v, p°
Taking into account (3.5), (1.7) —(1.9) and (3.7) we obtain

(@ (V), §) =§A(v)wdw+ éKdideiv qdz 3.8)

Since p° is a known vector belonging to the five-dimensional space, any vector
v admits the representation

v == v, (p°cos8 4+ nsin ), 0 = [0, n) 3.9)

where n is the unit vector orthogonal to p° and belongs to the plane (v, p°).
Using (3,.7) and (3, 9), we obtain the following relation for any V!, V2 D
[4 (V1) — 4 (7] [V} — v?] = {@ (°) [— ot (° -+ 0, Ol)p, + n2d' X

"+ 0, 8) 9,2 + p° oy’ (°+ 0, ) vt — 0 (" + 0, 8% 2,21} X

[p° (2, cos B — »,2% cos 62) 4 n* sin O'v,} — n?sin 6%,%]

(3.10)

The indices 1 and 2 in (3. 10) refer to the values of the functions corresponding to
the vectors V! and V2. Since —1<<n'n®*<{1 and ¥ (s°-+0,6) <0, on
the basis of (3.8) and (3.10) we arrive at the following inequality :

(@ (V) —  (V2), VA — V2) >
S {Is,/(°+0,8) 01—,/ (s° 40, (¥) v 2} (v, 1 cos 61 — v 2cos B%) + (8.11)
2
@ (%) [— 9 (s°+0,0Y) 0,1 -8 (s° + 0, 0) v 2] (v, sin B —
v 2sin 09)}dz + K S (div V1 — div V22 dz
o)
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Using the Cartesian coordinates z = vy, sinf, y = v, cos@ for 0=[0,n], v, =R,
the integrand function of the first integral in the right-hand side of (3. 11) assumes the
form

(f (215 y1) — f1 (2as Y))(@1 — 7o) -+ (fa (21, 1) — Jo (22, ¥e)) (1 — ya) (3.12)
where
0,0 = =@ () (*+ 0,0) e (0, 7y) =0, (°+ 0,02, (313)

Letusrewrite the expression (3. 12) withhelp of the Lagrange theorem, as follows:

f a
—1 (z*,y2) _3];/1- (*1,y*) Z,— Ty (3,14)

Ofs

(1 — %3, Yy — W)
dfz -
2z @59 G @y v — v

where z* and z** fall between z; and z, and y*, y** fall between ¥; and
Y2+ The necessary and sufficient conditions for the quadratic form

2
YT SS
i, j=1
where a;j arethe componentsof the matrix appearing in (3. 4) tobe positive definite is,

that s
f of
Tz >0 Sy >0 (3.15)

1 17}
(21) 5~ By (z2) — [a;l (33) +- ax (7'4)] >0

0f1
Here zi (i =1, 2, 3, 4) arearbitrary pointsinthehalf-plane =z >0 of the variables
() ¥).

Let us assume that the functions oy’ (s°-+ 0,0) and ¢ (s° -+ 0,0) belong to
the class C! (0, n) V s° & [e5, Al and satisfy the conditions (3, 15). Then the right-
hand side of the inequality (3. 11) is nonnegative and the inequality (3. 6) holds. On
the other hand, if (a ( V1) — a( V2), VI — V2) = 0, then by virtue of (3.8) —(3.11)

Vit = Vi2, div V1 = div V2 and the vector functions V! and V2 are equal to
each other as elements of H (Q), i,e. almost everywhere in Q.

The inequality (3, 6 ) remains valid for any V!, V2 = H (Q) provided that the

functions 6, (s°+ 0, 8), &’ (s°-+ 0, 6) are piecewise continuously differentiable in
6 = [0, 7] and satisfy the conditions (3.15).
Introducing the notation

a ’ 0 , =
21(s°, 0) = — @ (s°) [1_(5_5—(!;0_9) cos 0 4 9’ (s° + 0, 0) sin eJ
95,/ (s° + 0, 0)
g2(s° 0) E————W——'sine +0,/(s°+0,08)cos6

a ’ o
gs (so’ 9) = (D (so) [_i..(_;a';__oﬂ sin
ds,’ (s°+0,8)
g4(s%, 0) = — g — ¢os 040, (s°+40,08)sin b

0 — ¢ (s° +0,0)cos 9]

we can write the conditions (3. 15) with (3. 13) taken into account, in the form
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41 (so’ e) > 0, 82 (So, 9) > 0
{ (3.16)
min s°, 6) min °,0) >— °, 8) °, 6%)]2
olin 81 ( )0@1gﬂp 82(s%,0) > pdex (g5 (s° 0) - 8a (s°, 6%)]

The fact established above which states that the fundamental operator a (V) of
the boundary value problem (3.3), (3. 4) is strictly monotonous, leads to the following
uniqueness theorem.

Theorem 1, Let the extemnal loads F'+ and T,”* be such, that the inte-
grals in the right-hand side of (3. 5) define linear bounded functionals in the space
H (Q) , and the formulas (3, 16 ) hold. Then the problem (3, 3),(3.4) cannothave more
than one solution,

Thus the variation in the external loads determines uniquely the initial velocity of
the particles and hence the comer angles on the deformation trajectory at all points of
the body’, since

2 Yy,
cos @ = 3 —v:- P

Theorem 1 is related to the local characteristics of the process and can consequently
be applied to any elastoplastic process with a comer point appearing after a simple de-
formation.

Theorem 2., We assume that the external loads vary with time in the interval
[0, T1, so that a deformation process represented by a two-segment broken line occurs
at every point of the body. Under the conditions of Theorem 1, the solution of the
boundary value problem (3.1), (3.2) for two-mode elastoplastic processes is unique
when the stress vector is given on the whole of the boundary .,

Proof, Let us suppose that u!, u® e H (Q) are the solutions of the boundary
value problem (3,1),(8.2),with &' and e;;2 denoting the corresponding deform-
ation tensors, According to Theorem 1, for given F;*+ and T,;"* the corner angle

9 and the initial value of the deformation rate tensor V beyond the comer point on
the deformation trajectory can be determined uniquely,i.e. 62 = §2 and pi;i' = p;;?
almost everywhere in Q, We shall prove that st = s* and divu! =diva? al-
most everywhere in Q.

Every solution u! and u® satisfies the relation of the form

§ 15,9, (@ -+ K divudivel ds = § Fode + ( T,0.02 (3.17)
Q Q r

for any vector function ¢ = H (Q). In particular,when ¢ = ul — y# we can use
(3.17) to obtain the following equation for u' and u? :

S (88 —8;A(9;t— 9, dz + K S (dive! —divu?)?ide =0 (3.18)
Q ]

Since for two-mode elastoplastic processes we have
(Sit — Si2)(Dit — Bs®) = (04! cosB® — 0,2 cogh?) X (st — 2
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we arrive , taking into account the assumption 3 °, at the conclusion that (§;;* — ;%)
(94t — 9,;9=0 . Consequently the relation (3. 18) holds if and only if st = &2
and divu! = divu® almost everywhere in Q. Thus, e;* = 8;;® almost
everywherein  Q, i,e, ul = u? in  H(Q) and almost everywhere in Q,
and this completes the proof of Theorem 2.
Note. Here t represents a parameter used to discriminate a sequence of events,
This parameter varies monotonously with the length of the deformation trajectory,
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