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The quasistatic boundary value problem for two-mode elastoplastic processes 
and the problem of determining the initial velocity of the points of a body 
after the break for an arbitrary elastoplastic process with the break following 
the simple deformation, are both formulated. It is shown for elastoplastic 
processes with a comer point, that under certain assumptions about the phy - 

sical functions describing the material properties, the variation in the exter- 
nal load determines the initial velocities of the particles of the body in a 
unique manner, and therefore also the corner angle in the strain trajectory 

at each point. The theorem of uniqueness of the solution of the boundary 
value problem is proved for the loads which induce the two-mode elasto - 
plastic processes where regions of active deformations as well as the regions 
of unloading may appear in the body. 

1. Analysis of the stress- strain relations. In the case of a two-mode 
elastoplastic process with the strain trajectory developing a comer of angle 6 (O< 
8 < n) at the instant t , the relations between the stress oii and strain sij tensors 

have the form 
2 CD (3,) 

Sij = 3 - 3ij, 
3u 

t u’ t, (1.1) 

where 

2 SU 
‘ij = 3 m Lpij sin@-8)+Pij”sin6], d>t, 

G = IKE (1.2) 

6 = 1/3Sii, Sij = bij - 6bij, CsU = (s/asijsij)” 

e = l/& 3ij = Eij - E6ij, 

Pij = (3ij -- 3ij”)/(S - So)! 

3, = (‘/33ij3ij)“’ 

Pij’ = 3ij”/ 3,“, 3ij” = 3ij (to) 

3u, t Q to 

s = so - so cos 0 + J/-3,” - (s” sin 6)* sign cos 0, t > fcl 

s’ S!z 3, (to) = 3,“. So E [Es, h] 

Here ‘S is the arc length of the strain trajectory, so the length of the simple deform- 

ation segment ( E, denotes the yield point and h is a quantity of the order of several 

a, 1, Pif is the direction tensor on the simple deformation segment,@ (s) denotes 
the stress intensity during the simple deformation, pij with s > so is the direction 
tensor of the strain trajectory past the comer, K is the bulk elasticity modulus and 6 
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is the angle of convergence i. e. the angle between the stress vector o and the vector 
p of the tangent to the strain trajectory, corresponding to the tensor pij [ 3 1. 

In accordance with the isotropy postulate [ 4 1, we have o, = a, (SO, 8; a), 

6 = 6 (SO, 8; a). The relations (1.1) hold for any value of the comer angle 0, but 
the material functions o, and 6 for the directions of the active deformation and un- 

loading are different. It is usually assumed [ 1,4] that in the unloading region the stress 

and strain increments are linearly connected. When the deformation anisotropy is neg- 
lected , we have 

sij - Sij” = 2G (3ij - 3ij”) (1.3) 

where G denotes the shear modulus. 

We adopt the following assumptions for u2( and ft which are in agreement with 

the experimental data : 
1’. 0, E c? (sQ, a” + h) for any values of a” and 0, and u,, (a”, 0; a”) = 

Q (so); u, (a’, 0; a) + Cp (a) as 0 - 0, a > a’; there exists a,’ (a0 + 0, 0) = 

lim aa, (30, 8; ~)/a3 as 3 - so, 3 > 3". 

Experiments have shown r 5.6 1 that the quantity aa, (a’, 8; s)/8a is finite for any 
a E (a’, a” + h), 0 E (0, nil]. Here k is the trace of the delay of the vector prope-r- 

ties. Forsmall Aa=a-a” and large 0 E (0, n/21 more accurate experiments 
are needed. The arperlmental data available admit two possibilities : %A’ (a0 + 0, 

n/2) = 0 (experiments in [5,6 nor u,’ (8” + 0, 0) < 0 (experiments in [ 7 ,8 1) . 
For the work hardening materials the following approximation [ 91 can be used : 

U,' (so + 0, e) = w (ao) c~s 8 (1.4) 

where a,’ (3) is the hardening modulus during a simple deformation, and according 

to [ 7 ] we have the approximation 

Uti' (3' i- 0, e) = @' (3') - Ben (1.5) 

where B and n are material constants. 

2”. 6 E C (SO, 2 + h) for any 3" and 0; 8 (so, 8; a) = 0 for s = a’; 6 (a’, 

eia) -,o as 8 - 0 for any 3 > 3"; -oo < ikf< afl (So, 8; S)/aS < o for 

3 E (30, 3" + h); a ti’ ($0 + 0, e) = lim # (so”, 8; ~)/a3 exists for s --t ?, 9 > a”, 6 (so, 

0; S) = 0 when a > a” -j- h for any a” E [E,, A] and 0 E (0, n/2]. 
In particular, the following approximation is used in [ 7 1: 

6' (ao + 0, e) = -cem (so) (1.6) 

where C is a material constant, 

3’. The function u = o, cos 0 increases is a when a“ and 0 are fixed (see 

the experiments in [6],and(*). 
When e+o and 3 >a”, the second relations of (1.1) yield the relations of 

the theory of small elastoplastic deformations [ 11. The following limit exists under 

the assumptions lo and 2 ’ : 
_ 

+)Lenskii V.S. Study of plasticity of metals under complex loading. Doctoral dis - 
sertation, MGU, 1960 ) 
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S;; = lim s<j tt) - Sij (kl) 
t+to t - t, 

=2G1(S0, e) vij + 2G" (", e, vuPtjO 
(1.7) 

t>t. 

where d3ij 
Vij = 7 (SO, 0; so + 0) G’ (SO, 0) = - 

a) (SO) 6’ (do + 0,0) 
3sin0 (1.8) 

e (8, e) = l/s [uu’ (SO + 0, 9) + Q, (9) 6’ (SO + 0, B)ctg e1 (1.9) 

where Vii is the deviator of the strain rate tensor at the instant to, and V,, is the 
corresponding intensity. 

Formulas (1.3 ) , (1.7 ) and (1.9) imply that @ (8, 9) = C, G” (so, 6) = 0 in the 
region of unloading, i. e. when 8 E [n/2, n] , therefore we have 

‘I,’ (8~ + 0, e) = 3c cos e 6’ (8” + 0, e) = -3G sin e/a, (2) (1.10) 

Assuming now that the function Sij’+ iscontinuousin 8, we obtain a,,‘(~” +O,n/z)=O , 

2. Classes of functions used. Let D be a set of continuously differen- 
tiable vector functions u defined on a bounded region P c Ra and satisfying [ 101 
the conditions 

S udaT=o, S [uxr]dx=O 
P o 

The following Kom inequality [ lo] holds in the domain D : 

II < c11, I, = s $gdx, \ 
* i i 

I, = 8ij (u) eij (U) dr 
P 

Here C, is a constant depending on P only. The Poincari inequality Cl11 

I2< c2i, 't c8 
IS I 

udx 
2 

I,= ]u(sdx S B P 

(2.1) 

(2.2) 

(2.3) 

holds for the functions belonging to D . Here C, and C, are constants depending 

on P only. Therefore, by virtue of (2.2) and (2.3 ) we find, that the Sobolev norms 

I u IfI, - 119 lluu&, = II+ 12 
and the norm [ 12 1 

Ilull* = 1, (2.4) 

are equivalent. 
Let X (P) denote a Hilbert space obtained by the closure of D in the norm (2.4 ) . 

8, Uniquenear theorem. In the case of two-mode elastoplastic processes the 
problem of equiltbrium of a body occupying the region Q with the boundary I’ can be 
stated in the form of the following boundary value problem : it is required to determine the 
vector displacement function u, the deformation tensor aij and thestress tensor 

W which satisfy, in the region P , thefollowingrequirement for every t E [0, T] 

u E c2(q r-j cl(a u r) 

i?ij, Oij E C’ (62) n C” (62 IJ r) (i, i = 1, 2, 3) 
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as well as the relations (1.1) and (1.2 ) , the Cauchy relations 

au(U~=~~~+~) 

equations of equilibrium and the boundary conditions 

(3.1) 

ui = $i on rU aii vj = TVi on I0 (I, IJ I0 = I’). (3.2) 

The mass forces F, the stresses T, and the displacement 9 at the boundary 
are all given functions. Let us assume that F, T, and 0 vary in such a manner that 

a simple deformation trajectory is realized [ 1,13 ] on the Interval [O, to] at any point 
of the body. Let u” be the displacement vector at the instant to, corresponding to 

the solution of the problem of simple deformation [ 141. 
Mfferentiating the relations (3.1) and (3.2) with respect to t (t > to), performing 

the passage to the limit f --) to + 0 and taking into account the formulas (1.7 ) - 

(1.9) and (1.2 ) , \we obtain the following system of differential equations for determining 
the initial velocity of the particles beyond the comer point. 

G’ (so, 0) AV, - e,div V + J& (2C’ (so, 9)) vij + 
3 

K & div V + G” (so, 0) z)zL + 
z 

3,o AuiO - 2: divu” 
( 1 

51ij0 + “i’ = 0 

where 

vi =*;.+ 0n r U? g:tv. = T-T on 
ZJ 3 

dFi dTvi 
Pi+=limx, T;z=hnT, 

(t - hl)7 (1> cl) 

l-0 

d$i 
$i+ =liin - dt 

(3.3) 

(3.4) 

We shall consider, for the sake of simplicity, the second boundary value problem 
in which the boundary r is acted upon by the surface forces T, only, i.e. when 

rO = r, ru = 0. Multiplying scalarly the system of equations (3.3 ) by any vector 
function continuously differentiable in 62 and Integrating over the whole volume we 

obtain, with (3.4) taken into account, an integral identity. We shall call the vector 
function V E H (h-2) satisfying this integral identity for any continuously differentiable 

vector function cp , a generalized solution of the boundary value problem (3.3 ) ,( 3.4 ) , 
Let us reduce the boundary value problem (3.3 ) , (3.4 ) to the operator form . The 

assumptions that the functions G’ (SO, 0) and c;” (so, 9) are continuous in (so, 9) E 

[Es, h] x [O, Jr] imply, that they are bounded. In this case we can separate a 

linear bounded functional in cp E H (52) from the integral identity in question for 

any V E H (0) . The Riesz theorem [ 151 will then enable us to find the operator 

a ( V) acting from H (52) into H (Q). We have 

(U(V), cp) ~ s [2G’ (so, 0) vij + 2G” (“‘, e, “uPijO + (3.5) 
n 
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3KBi,; div V] Eij (q) dx = 5 F;+qidx + S T;zqidx, VJJJ E H (8) 
5.2 r 

We shall call the operator n ( V) the ~ndamental operator of the boundary value 
problem (3.3 ) , (3.4) and assume that the integrals in the right hand side of (3.5 ) define 
linear bounded integrals in the space H (S-2). Reference [ 16 J gives various conditions 
under which the necessary requirement is realized, e.g. Fi E LP (62) (VP a 6/a) and 

T :+ E L, (r) (VP > 4/9). According to the Riesz theorem there exists 
sucvhz that 

f E H (Q) 

(f, q’) = s F;+cp$x + s T;&dx, Vcp E H (Q) 
Q r 

Let us find the sufficient conditions which must be satisfied by the unctions uu’ 
(so f 0, O) and 6’ (SO + 0, O) for the operator a ( V) to be strictly monotonous on 

the set H (0) [ 17 1, i. e. for the inequality 

(a ( Vl) - a ( V), V’ - VS) >, 0 (3.6) 

to hold for any V1, V2 E H (Cl) and tobecomean equality only whenvr = va in H (Q). 

Let V and w be the vectors in a five-dimensional space 36 [ 3 ] corresponding 
to the deviators Vij and %i (9). We set 

A (v) = - 
in (SO) 6’ (SD + 0, dj 

sin e 
a, (80) ctg 86’ (SQ + 0, e)] V~PQ 

Taking into account (3.5), (1.7) -(l. 9) 

(a 0% cp) = s A (VI wdx + 
R 

v + b$“ fs” + 0, 0) i- 

and (3.7 ) we obtain 

s 
K div V div qdx 

Q 

(3.7 ) 

(3.8) 

Since p” is a known vector belonging to the Eve-dimen~o~al space, any vector 
v admits the representation 

v~=vU(poc0s0+nsin6), eE[o,n] (3.9) 

where n is the unit vector orthogonal to p” and belongs to the plane (v, p”). 
Using (3.7 ) and (3.9), we obtain the following relation for any VI, Vt E D : 

1.4 (v’) - A (P)] [v’ - v2] = {@ (so) {-- n%’ (2’ + 0, Bl)vu” + n%‘x 

($0 -t 0, e) v,*~ + p* [~;lf (2 4 0, 01) 4 - G,' (2 + 0, 08) v,qf~ 
(3.10) 

IP” bul c~s 81 - ~~2 cos 02) + n1 sin 0lu,l - II* sin esv,*] 

The indices 1 and 2 in (3.10 ) refer to the values of the functions corresponding to 

the vectors V1 and Va. Since -1 < nl na < 1 and @’ (so -I- 0, 0) < 0, on 

the basis of (3.8) and (3.10 ) we arrive at the following inequality : 

(I, (so) [- 6’ (so + 0, 61) vu1 + 6’ (so -+ 0, 62) u$] (u,lsin 0’ - 

zu2 sin on)} dx i_ K S (div VI-- div V”)2 dx P 



Theorem of uniquenur for elastoplastlc procuses 401 

Using the Cartesian coordinates z = vu sin& Y = rzL cos6 for 6 E [O, nl, vu E K , 
the i&grand function of the first integral in the right-hand side of (3.11) assumes the 

form 
(fl (Xl, Yl) - fl 6% !/!&)(~I - 12) 4 (fa h, Yl) - f2 6% YP))(Yl - Y*) 

where 

(3.12) 

jr (6, vu) = --Q, (~0) 0’ (90 + 0, 0) l’U fs (e, vU) = u’; (so + 0, e) vu (3.13) 

Let us rewrite the expression (3.12 ) with help of the Lagrange theorem, as follows : 

afl 
ar (x** Y2) * (%Y*) 2% --x2 

@I - 529 Y1- Y2) 
8f2 

Y 
x (29. Y2) -$ @lY**N Y1- Y2 

where x* and x** fall between z1 and xr and Y*, Y** fall between 

Ya. The necessary and sufficient conditions for the quadratic form 

(3.14 ) 

~1 and 

where aii are the components of the matrix appearing in (3.4) to be positive definite is, 
that 

-g >o, -p>o (3.15) 

2 (zl) -c$- (2%) - + [+f (z3) -+ + (z,$ > 0 

Here zi (i = 1, 2, 3, 4) arearbitrary pointsinthehalf-plane x > 0 of the variables 
(5, Y). 

Let us assume that the functions a,’ (so + 0, 6) and 6’ (so -t- 0, e) belong to 

the class Cr (0, n) V s” E [E,, hl and satisfy the conditions (3.15 ) . Then the right - 

hand side of the inequality (3.11) is nonnegative and the inequality (3.6 ) holds. On 

the other hand, if (a ( Vr) - a( V’s), Vl - Vs) = 0, then by virtue of (3.8) -(3.11) 
Vijl = Vii’, div Vr = dh Vs and the vector functions Vr and VB are equal to 

each other as elements of H (Q), i.e. almost everywhere in 0. 
The inequality (3.6) remains valid for any Vl, ~2 E H (e) provided that the 

functions a,’ (so + 0, e), 6' (so+ 0, e) are piecewise continuously differentiable in 

8 E IO, ad and satisfy the conditions (3.15 ) . 
Introducing the notation 

g, (so, 0) E - Q (~0) Ia*’ (soa: O’ e, cos 0 + 0’ (9 + 0, 0) sin 61 

g2 tso, 8) E - 

aoU’ (2 + 0, e) 
ae * sin e + CT,’ (SO + 0, e) cos 0 

g, (so, 0) E us (SO) [ 6* (‘Oat O’ e, sin e - 6’ (so + 0, 0) co9 e] 

g, (SO, 0) = 
ACID’ (~0 + 0. e) 

&I cos 8 + oU’ (so + 0, e) sin 6 

we can write the conditions (3.15) with (3.13) taken into account, in the form 
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g1 (so, 0) > 0, g, (3, Q) > 0 
z (3.16) 

min 
O<tk3 

gl (So, O)zgn g2 (SO, 0) > 4 oG;==_ bh (So. 0) i- g4 (So, w2 

The fact established above which states that the fundamental operator a (V) of 
the boundary value problem (3.3 ), (3.4) is strictly monotonous, leads to the following 
uniqueness theorem. 

Theorem 1. Let the external loads F’+ and T,‘+ be such, that the inte- 
grals in the right-hand side of (3.5) define linear bounded functionals in the space 
H (52) , and the formulas (3.16 ) hold. Then the problem (3.3)) (3.4) cannot have more 

than one solution. 
Thus the variation in the external loads determines uniquely the initial velocity of 

the particles and hence the comer angles on the deformation trajectory at all points of 
the body’, since 

2 ‘ii 
case ‘3v Pijo 

u 

Theorem 1 is related to the local characteristics of the process and can consequently 
be applied to any elastopla&ic process with a corner point appearing after a simple de- 
formation. 

T h e o r e m 2. We assume that the external loads vary with time in the interval 
[O, Tl, so that a deformation process represented by a two-segment broken line occurs 

at every point of the body. Under the conditions of Theorem 1, the solution of the 

boundary value problem (3.1)) (3.2) for two-mode elastoplastic processes is unique 

when the stress vector is given on the whole of the boundary. 

Proof. Let us suppose that ur, us E H (62) are the solutions of the boundary 
value problem (3.1)) (3.2)) with aii’ and sija denoting the corresponding deform- 

ation tensors. According to Theorem 1, for given Fi’f and T,‘+ the corner angle 

3 and the initial value of the deformation rate tensor V beyond the comer point on 

the deformation trajectory can be determined uniquely, i. e. 81 = 92 and pij’ = p# 
almost everywhere in 8, We shall prove that s’ = s3 and div u1 = div us al- 

most everywhere in 8. 
Every solution ul and 19 satisfies the relation of the form 

s (sij3ij (q) -t K div u div c@] dx = S Fiqidx + 1 T,iT,dx (3.17 ) 
Q P r 

for any vector function cp E H (8). In particular, when cp = u1 _ ua we can use 

(3.17 ) to obtain the following equation for u1 and 19 : 

S (Sij’ - Sij2) (3ij’ - 3ij2) dZ + K 1 (div III- div ua)‘dx = 0 
o a 

(3.13) 

Since for two-mode elastoplastic processes we have 

(Sijl - Sij2)(3ij1 - 3*jB) = (Uu' COSW - Uu' CO*) X (91 - S2) 
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we arrive, taking into account the assumption 3 ‘, at the conclusion that (S$ - Sij2) 

(Q’- SQ2)SO . Consequently the relation (3.18) holds if and only if ~1 = ~2 

and div u1 = div u2 almost everywhere in 8. Thus, ~jl = qj2 almost 
everywhere in 62, i.e. ui = ~2 in H (8) and almost everywhere in 8, 
and this completes the proof of Theorem 2. 

N o t e. Here t represents a parameter used to discriminate a sequence of events. 
This parameter varies monotonously with the length of the deformation trajectory, 
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